goblin_lite.impact_categories.climate_change

The Impact Categories Climate Change module is designed to calculate and analyze various environmental impacts in the context of land use change, livestock and crop production. The module integrates data from various sources like cattle and sheep lifecycle assessments, crop production data, and land use changes, providing a comprehensive view of environmental impacts.

Key Features

Integration with Multiple Data Sources: Utilizes data from cattle, sheep, crop lifecycle assessments, and land use changes. Environmental Impact Analysis: Calculates emissions contributing to climate change, eutrophication, and air quality.

Flexible Data Handling: Works with different types of data inputs, including livestock and crop production data, land use transition data, and more.

Module Contents

Classes

ClimateChangeLandUse

A class for calculating the impact of land use changes on climate change across various land types.

ClimateChangeLivestock

A class for assessing the impact of livestock on climate change. It calculates emissions

ClimateChangeCrop

A class for assessing the impact of crops on climate change. It calculates emissions

ClimateChangeTotal

A class for assessing the total impact of land use change, livestock and crops on climate change. It calculates emissions

class goblin_lite.impact_categories.climate_change.ClimateChangeLandUse(calibration_year, target_year, transition_data, landuse_data, forest_data, ef_country, AR_VALUE='AR5')[source]

A class for calculating the impact of land use changes on climate change across various land types.

calibration_year

The baseline year for calculations.

Type:

int

target_year

The target year for future projections.

Type:

int

transition_data

Data detailing land use transitions.

Type:

DataFrame

landuse_data

Specific data related to land use.

Type:

DataFrame

forest_data

Data related to forest areas.

Type:

DataFrame

ef_country

emission factor country.

Type:

str

AR_VALUE

The assessment report value (default ‘AR5’).

Type:

str

climate_change_landuse_past()[source]

Calculates past emissions for different land uses.

climate_change_landuse_future()[source]

Projects future emissions based on land use scenarios.

climate_change_landuse()[source]

Combines past and future data for a comprehensive view.

climate_change_landuse_past()[source]

Calculate past emissions for different land use types, considering various greenhouse gases.

Returns:

A dataframe with emissions data for different land use types and gases.

Return type:

DataFrame

climate_change_landuse_future()[source]

Project future emissions based on various land use scenarios.

Returns:

A dataframe with projected emissions data for different land use types and gases.

Return type:

DataFrame

climate_change_landuse()[source]

Combine past and future emissions data to provide a comprehensive view of land use impact on climate change.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

class goblin_lite.impact_categories.climate_change.ClimateChangeLivestock(ef_country, calibration_year, target_year, transition_data, landuse_data, crop_data, AR_VALUE='AR5')[source]

A class for assessing the impact of livestock on climate change. It calculates emissions from cattle and sheep for both past and future scenarios, considering various greenhouse gases.

ef_country

emission factor country..

Type:

str

calibration_year

The year used as a baseline for calculations.

Type:

int

target_year

The target year for future scenario projections.

Type:

int

transition_data, landuse_data, crop_data

DataFrames containing relevant data for calculations.

Type:

DataFrame

AR_VALUE

The assessment report value, defaulting to ‘AR5’.

Type:

str

cattle_climate_change_class, sheep_climate_change_class, crop_climate_change_class

Classes for calculating emissions for each category.

goblin_data_manager_class

A class for managing various data and constants.

Type:

GoblinDataManager

climate_change_livestock_past(baseline_animals, baseline_farms)[source]

Calculates past emissions based on baseline data for animals and farm inputs.

climate_change_livestock_future(scenario_animals, scenario_farms)[source]

Projects future emissions based on scenario data for animals and farm inputs.

climate_change_livestock_dissagregated(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Provides detailed emissions data combining past and future scenarios.

climate_change_livestock_aggregated(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Provides aggregated emissions data for easy interpretation and analysis.

climate_change_livestock_categories_as_co2e(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Converts emissions data into CO2 equivalents for various categories.

climate_change_livestock_past(baseline_animals, baseline_farms)[source]

Calculate past livestock-related emissions for cattle and sheep, including various emission categories.

Parameters:
  • baseline_animals (DataFrame) – Data containing baseline animal information.

  • baseline_farms (DataFrame) – Data containing baseline farm information.

Returns:

A dictionary of emissions data categorized by emission type.

Return type:

dict

climate_change_livestock_future(scenario_animals, scenario_farms)[source]

Calculate scenario livestock-related emissions for cattle and sheep, including various emission categories.

Parameters:
  • baseline_animals (DataFrame) – Data containing baseline animal information.

  • baseline_farms (DataFrame) – Data containing baseline farm information.

Returns:

A dictionary of emissions data categorized by emission type.

Return type:

dict

climate_change_livestock_dissagregated(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Combine past and future emissions data to provide a comprehensive view of livestock impact on climate change.

Parameters:
  • baseline_animals (DataFrame) – Data containing baseline animal information.

  • scenario_animals (DataFrame) – Data containing scenario animal information.

  • baseline_farms (DataFrame) – Data containing baseline farm input information.

  • scenario_farms (DataFrame) – Data containing scenario farm input information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

climate_change_livestock_aggregated(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Combine past and future emissions data to provide a comprehensive view of livestock impact on climate change for various GHG categories.

Parameters:
  • baseline_animals (DataFrame) – Data containing baseline animal information.

  • scenario_animals (DataFrame) – Data containing scenario animal information.

  • baseline_farms (DataFrame) – Data containing baseline farm input information.

  • scenario_farms (DataFrame) – Data containing scenario farm input information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

climate_change_livestock_categories_as_co2e(baseline_animals, scenario_animals, baseline_farms, scenario_farms)[source]

Combine past and future emissions data to provide a comprehensive view of livestock impact on climate change for various GHG categories, converted to CO2 equivalents.

Parameters:
  • baseline_animals (DataFrame) – Data containing baseline animal information.

  • scenario_animals (DataFrame) – Data containing scenario animal information.

  • baseline_farms (DataFrame) – Data containing baseline farm input information.

  • scenario_farms (DataFrame) – Data containing scenario farm input information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

class goblin_lite.impact_categories.climate_change.ClimateChangeCrop(ef_country, default_urea=None, default_urea_abated=None, AR_VALUE='AR5')[source]

A class for assessing the impact of crops on climate change. It calculates emissions from crops for both past and future scenarios, considering various emission categories.

ef_country

emission factor country.

Type:

str

crop_climate_change_class

A class for calculating emissions for each category.

common_class

A class for managing various data and constants.

Type:

CommonParams

default_urea_proportion

The proportion of fertiliser inputs that is urea.

Type:

float

default_urea_abated_porpotion

The proportion of urea that is abated urea.

Type:

float

climate_change_crop_past(crop_dataframe)[source]

Calculates past emissions based on baseline data for animals and farm inputs.

climate_change_crop_future(crop_dataframe, scenario_dataframe)[source]

Projects future emissions based on scenario data for animals and farm inputs.

climate_change_crops_dissagregated(crop_dataframe, scenario_dataframe)[source]

Provides detailed emissions data combining past and future scenarios.

climate_change_crops_categories_as_co2e(crop_dataframe, scenario_dataframe)[source]

Provides emissions data combining past and future scenarios, converted to CO2 equivalents.

climate_change_crop_past(crop_dataframe)[source]

Calculates past emissions based on baseline data for animals and farm inputs.

Parameters:

crop_dataframe (DataFrame) – Data containing baseline crop information.

Returns:

A dictionary of emissions data categorized by emission type.

Return type:

dict

climate_change_crop_future(crop_dataframe, scenario_dataframe)[source]

Projects future emissions based on scenario data for animals and farm inputs.

Parameters:
  • crop_dataframe (DataFrame) – Data containing baseline crop information.

  • scenario_dataframe (DataFrame) – Data containing scenario information.

Returns:

A dictionary of emissions data categorized by emission type.

Return type:

dict

climate_change_crops_dissagregated(crop_dataframe, scenario_dataframe)[source]

Combine past and future emissions data to provide a comprehensive view of crop impact on climate change.

Parameters:
  • crop_dataframe (DataFrame) – Data containing baseline crop information.

  • scenario_dataframe (DataFrame) – Data containing scenario information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

climate_change_crops_categories_as_co2e(crop_dataframe, scenario_dataframe)[source]

Combine past and future emissions data to provide a comprehensive view of crop impact on climate change, converted to CO2 equivalents.

Parameters:
  • crop_dataframe (DataFrame) – Data containing baseline crop information.

  • scenario_dataframe (DataFrame) – Data containing scenario information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

climate_change_crops_aggregated(crop_dataframe, scenario_dataframe)[source]

Combine past and future emissions data to provide a comprehensive view of crop impact on climate change for various GHG categories.

Parameters:
  • crop_dataframe (DataFrame) – Data containing baseline crop information.

  • scenario_dataframe (DataFrame) – Data containing scenario information.

Returns:

A combined dataframe of past and future emissions data.

Return type:

DataFrame

class goblin_lite.impact_categories.climate_change.ClimateChangeTotal[source]

A class for assessing the total impact of land use change, livestock and crops on climate change. It calculates emissions from land use change, livestock and crops for both past and future scenarios, considering various emission categories.

common_class

A class for managing various data and constants.

Type:

CommonParams

total_climate_change_emissions(calibration_year, target_year, scenario_dataframe, dataframe_dict)[source]

Calculates total emissions for each scenario.

total_climate_change_emissions(calibration_year, target_year, scenario_dataframe, dataframe_dict)[source]

Calculates climate change total emissions for each scenario.

Parameters:
  • calibration_year (int) – The year for which calibration data is available.

  • target_year (int) – The year for which scenario ends.

  • scenario_dataframe (DataFrame) – Data containing scenario information.

  • dataframe_dict (dict) – A dictionary of dataframes containing baseline and scenario information.

Returns:

A dataframe of total emissions for each scenario.

Return type:

DataFrame